

Mark Scheme (Results)

Summer 2019

Pearson Edexcel International GCSE In Further Pure Mathematics (4PM1) Paper 02

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2019 Publications Code 4PM1_02_2019_MS All the material in this publication is copyright © Pearson Education Ltd 2019

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.

Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

• Types of mark

- o M marks: method marks
- A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)

• Abbreviations

- cao correct answer only
- o ft follow through
- isw ignore subsequent working
- o SC special case
- oe or equivalent (and appropriate)
- o dep dependent

- o indep independent
- o awrt answer which rounds to
- o eeoo each error or omission

• No working

If no working is shown then correct answers normally score full marks If no working is shown then incorrect (even though nearly correct) answers score no marks.

• With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks. If a candidate misreads a number from the question. Eg. Uses 252 instead of 255; method marks may be awarded provided the question has not been simplified.

- If there is a choice of methods shown, then award the lowest mark, unless the subsequent working makes clear the method that has been used.
- Examiners should send any instance of a suspected misread to review. If there is a choice of methods shown, then award the lowest mark, unless the subsequent working makes it clear the method has been used.

• Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.

- It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.
- Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

• Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded to another.

General Principles for Further Pure Mathematics Marking

(but note that specific mark schemes may sometimes override these general principles)

Method mark for solving a 3 term quadratic equation:

1. Factorisation:

 $(x^2 + bx + c) = (x + p)(x + q)$, where |pq| = |c| leading to x = ... $(ax^2 + bx + c) = (mx + p)(nx + q)$ where |pq| = |c| and |mn| = |a| leading to x = ...

2. <u>Formula</u>:

Attempt to use the **correct** formula (shown explicitly or implied by working) with values for *a*, *b* and *c*, leading to x = ...

3. Completing the square:

 $x^{2} + bx + c = 0$: $(x \pm \frac{b}{2})^{2} \pm q \pm c = 0$, $q \neq 0$ leading to x = ...

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration:

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

Use of a formula:

Generally, the method mark is gained by either

quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values

or, where the formula is <u>not</u> quoted, the method mark can be gained by implication from the substitution of <u>correct</u> values and then proceeding to a solution.

Answers without working:

The rubric states "Without sufficient working, correct answers <u>may</u> be awarded no marks".

General policy is that if it could be done "in your head" detailed working would not be required. (Mark schemes may override this eg in a case of "prove or show...."

Exact answers:

When a question demands an exact answer, all the working must also be exact. Once a candidate loses exactness by resorting to decimals the exactness cannot be regained.

Rounding answers (where accuracy is specified in the question)

Penalise only once per question for failing to round as instructed - ie giving more digits in the answers. Answers with fewer digits are automatically incorrect, but the is rule may allow the mark to be awarded before the final answer is given.

June 2019 4PM1 Paper 2 Mark Scheme

Question Number	Scheme	Marks
1(a)	$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}, = -3\mathbf{i} + 4\mathbf{j}$	M1,A1 (2)
(b)	$\left \overrightarrow{AB}\right = 5$	
	Unit vector $=\frac{1}{5}(-3\mathbf{i}+4\mathbf{j})$ or $-\frac{1}{5}(-3\mathbf{i}+4\mathbf{j})$ oe Accept column vectors	M1A1 (2)
		[4]
(a)		
M1	For $\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$ seen, or $\overrightarrow{AB} = (\mathbf{i} + 7\mathbf{j}) - (4\mathbf{i} + 3\mathbf{j})$ or equivalent in colu	mn form
A1	Correct simplified answer as shown or equivalent but NOT a column vector	or
(b)		
M1	Correct modulus of their \overrightarrow{AB} and divide \pm their \overrightarrow{AB} by it Correct unit vector, as shown or equivalent inc column vector	
A1	$\pm \frac{1}{5}(-3\mathbf{i}+4\mathbf{j})$ scores M1A0 $\frac{1}{5}-3\mathbf{i}+4\mathbf{j}$ scores M1A0	
NB:	If \overrightarrow{BA} is found in (a) both (b) marks are still available	

Question Number	Scheme	Marks
2	$\frac{\mathrm{d}A}{\mathrm{d}t} = 8$	B1
	$\frac{\mathrm{d}r}{\mathrm{d}r} = 2\pi r$	M1
	$A = 50 r = \sqrt{\frac{50}{\pi}} (3.989)$	M1
	$\frac{\mathrm{d}r}{\mathrm{d}t} = \frac{\mathrm{d}r}{\mathrm{d}A} \times \frac{\mathrm{d}A}{\mathrm{d}t}, = \frac{1}{2\pi\sqrt{\frac{50}{\pi}}} \times 8, = 0.319 \ (\mathrm{cm/s})$	M1,A1ft,A1 [6]
NB	For either method, accept A or S for area, r for radius. Any other letters us and/or radius must be defined.	ed for area
B1	$\frac{\mathrm{d}A}{\mathrm{d}t} = 8$ seen explicitly or used	
M1	Attempt to differentiate πr^2 to obtain $\frac{dA}{dr}$ Power of <i>r</i> must decrease	
M1 M1	Attempt to obtain r when $A = 50 \text{ cm}^2$ (ie solve $50 = \pi r^2$) For a correct, useful, chain rule. Derivatives can appear in any order	
A1ft	Substitute their known quantities and rearrange to $\frac{dr}{dt} = \dots$ if not in this form already.	
A1	All 3 M marks needed Correct answer, must be 3 sf	
ALT	$\frac{\mathrm{d}A}{\mathrm{d}t} = 8$	B1
	$r = \sqrt{\frac{a}{\pi}} \text{ oe}$ $\frac{dr}{dA} = \frac{1}{2\sqrt{\pi}} A^{-\frac{1}{2}}$	M1
	$\frac{\mathrm{d}r}{\mathrm{d}A} = \frac{1}{2\sqrt{\pi}} A^{-\frac{1}{2}}$	M1
	$\frac{\mathrm{d}A}{\mathrm{d}t} \times \frac{\mathrm{d}r}{\mathrm{d}A} = \frac{\mathrm{d}r}{\mathrm{d}t}$	M1
	$= 8 \times \frac{1}{2\sqrt{\pi}} A^{-\frac{1}{2}} = 8 \times \frac{1}{2\sqrt{\pi}} \times \frac{1}{\sqrt{50}}$	A1ft
	= 0.3191 = 0.319 (cm/s)	A1
B1	$\frac{dA}{dt} = 8$ seen explicitly or used	
M1	dt Attempt to find r in terms of A	
M1	Attempt to differentiate their expression for r to obtain $\frac{dr}{dA}$ power of A must decrease	
M1	For a correct, useful, chain rule. Derivatives can appear in any order	
A1ft	Substitute their known quantities and rearrange to $\frac{dr}{dt} = \dots$ if not in this form already. All	
A1	3 M marks needed Correct answer, must be 3 sf	

Question Number	Scheme	Mark	s
3(a)	$\frac{\mathrm{d}v}{\mathrm{d}t} = 2t - 4$	M1	
	$dt Accel = 2 (m/s^2)$	A1	(2)
(b)	$s = \int_0^6 \left(t^2 - 4t + 7\right) dt = \left[\frac{t^3}{3} - 2t^2 + 7t\right]_0^6$	M1A1	
	$=\frac{6^{3}}{3}-2\times 6^{2}+7\times 6=42 \ (m)$	dM1 A1 (4)	cao [6]
(a)		I	L°J
M1	Attempt to differentiate the expression for v . Power of t to decrease in at least and increase in none.	east one t	erm
A1	Substitute $t = 3$ and obtain correct acceleration – units may be missing		
(b)	Attenuet to intermete the engine form. Deven of the increase in at least		a na đ
M1	Attempt to integrate the expression for v . Power of t to increase in at least decrease in none. Ignore limits if shown. Constant not needed for indefinit		
A1	Correct integration. Limits/constant not needed.		
dM1	Either substitute the limits 0 and 6 or use $s = 0$, $t = 0$ to obtain a value for the constant and substitute $t = 6$ in the complete expression. (Substitution of 0 can be implied if the result would have been 0) Depends on the previous M mark If more values of t are substituted and results used award M0		
Alcao	S = 42 (m)		
NB	Ans 42 w/o working scores 4/4 (Done on a calculator)		
4	$(2x+5)^{2} = (3x-1)^{2} + (5x)^{2} - 2 \times (3x-1) \times 5x \cos 60^{\circ}$	M1A1	
	$15x^2 - 21x - 24(=0) (5x^2 - 7x - 8 = 0)$	A1	
	$x = \frac{21 \pm \sqrt{21^2 + 4 \times 15 \times 24}}{30}$	M1	
	$30 \\ x = 2.1456 (or -0.7456)$		
	x = 2.1450(01 - 0.7450) $\therefore x = 2.15$	A1	[5]
		AI	[5]
M1	Use the cosine rule in either form. Rule to be correct either by quoting and general formula or by implication from a correct substitution.	l using th	e
A1	Correct substitution in their cosine rule.		
A1	Simplify to obtain a 3TQ. Terms in any order. $= 0$ may be missing	0	
M1	Solve their 3TQ by formula (correct general formula or correct substitution for their equation) or completing the square. Reach a positive value for <i>x</i> . Negative need not be		
	seen. Calculator solutions: Correct answer from correct equation scores M1A1 M0A0	, otherwi	se
Alcao	Correct value for x. Must be 3 sf		
	Negative value (if shown) must be eliminated or positive clearly identified required value	l as the	

Question Number	Scheme	Marks
5	$(x+2y=17)$ $x=\frac{36}{y}$ $\left(\text{or } y=\frac{36}{x} \right)$	M1
	$\frac{36}{y} + 2y = 17, 36 + 2y^2 = 17y (\text{or } 72 + x^2 = 17x)$	M1
	$2y^2 - 17y + 36 \ (=0) \ (or \ x^2 - 17x + 72 = 0)$	Al
	(y-4)(2y-9)=0 (or $(x-8)(x-9)$)	
	y = 4 x = 9	dM1A1
	$y = 4\frac{1}{2} x = 8$	A1 (6)
M1 M1 A1 M1 A1 A1	Rearrange $xy = 36$ to $x =$ or $y =$ Eliminate x or y from the linear equation and obtain a 3TQ, $= 0$ not needed Correct 3TQ, terms in any order. $= 0$ not needed Solve their 3TQ by any valid method. Obtain at least one value for y or x Either 2 correct values for x or y or a correct (x, y) pair Both pairs correct and pairing clear.	
ALT:	The following method may possibly be seen: $xy + x + 2y = 53 \triangleright 36 + x + 2y = 53 \triangleright x + 2y = 17$ and $xy = 36$ or $x \times 2y = 72$	M1
	Hence x and 2y are the roots of the equation $z^2 - 17z + 72 = 0$	M1A1
	$(z - 9)(z - 8) = 0 \Rightarrow z = 9 \text{ or } 8$	M1
	So $x = 8$ $y = 4.5$ or $x = 9$ $y = 4$	A1A1 [6]
M1 M1 A1 M1 A1 A1	Substitute $xy = 36$ in the linear equation to obtain $x + 2y = 17$ and $xy = 36$ oe Obtain a 3TQ with roots x and 2y Correct 3TQ Solve their 3TQ by any valid method. Obtain at least one value for <i>for the roots</i> Either 2 correct values for x or y or a correct (x, y) pair Both pairs correct and pairing clear.	
	Special Case $x + 2y = 17$ $xy = 36$ Use $xy = 36$ in the other equation to obtain $x + 2y = 17$ $\Rightarrow x = 9$ $y = 4$ By inspection:Score M1M0A0M1A1A0(Must see $x + 2y = 17$; otherwise no marks)If the second answer is also obtained correctly by inspection, award all marks	

Question Number	Scheme	Marks
6(a)(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 4\mathrm{e}^{2x} + 2(4x-3)\mathrm{e}^{2x}$	M1A1A1 (3)
(ii)	$(4x-3)\frac{dy}{dx} = (4x-3)(8x-2)e^{2x} = (8x-2)y^{*}$	M1A1cso (2)
(b)	$\frac{dy}{dx} = \frac{5\cos 5x \times (x-3)^2 - \sin 5x \times 2(x-3)}{(x-3)^4}$	M1A1A1 (3)
ALT	Using product rule: $()^{-2}$	
	$y = (x-3)^{-2}\sin 5x$	M1
	$\frac{dy}{dx} = -2(x-3)^{-3}\sin 5x + 5(x-3)^{-2}\cos 5x$	A1A1
(a)(i)		[8]
M1	Use product rule to differentiate the given expression. Must have 2 terms a be of the form ke^{2x} and the other of the form $k'(4x-3)e^{2x}$ where $k' = 1$ of	
A1	Either term correct	
A1	Second term correct	
NB	No simplification needed for these 3 marks	
ALT	$y = 4xe^{2x} - 3e^{2x} \Longrightarrow \frac{dy}{dx} = 4e^{2x} + 8xe^{2x} - 6e^{2x}$	
NB	M1 Expand the given expression and differentiate using the product rule for $4xe^{2x}$ A1 Any 2 terms correct; A1 Third term correct. No simplification needed for these 3 marks	
(ii)	dv = dv	
M1	Use their result from (i) to obtain an expression for $(4x-3)\frac{dy}{dx}$. No need to	to simplify.
A1cso	Correct given result obtained with no errors in the working. Can start with LHS and show equal to the RHS or vice versa or can start with each side and "meet in the middle"	
(b)		
M1	Attempt the quotient rule. The denominator must be $(x-3)^4$ and the number	erator must be
	of the form $(k\cos 5x \times (x-3)^2 - \sin 5x \times l(x-3))$ $k = \pm 5$ or ± 1 , $l = 1$ or 2	
	(ie sine may have been differentiated to $-\cos(\theta)$	
A1	One fully correct term in numerator.	
A1	All fully correct.	
ALT M1	Rewrite without a quotient and apply the product rule obtaining 2 terms of	f the form
1111	shown	
A1	Either term correct	
A1	Second term correct	
	No need to simplify	

Question Number	Scheme	Marks
7(a)	(i) $a = 9$	B1
	(ii) $d = 4$	B1 (2)
(b)	(i) $a = 9$ (ii) $d = 4$ (i) $a = 4$ (ii) $r = 3$	B1
	(ii) $r = 3$	B1 (2)
(c)	(II) $Y = 3$ $A_{14} = \frac{14}{2} (2 \times 9 + 13 \times 4)$ or $\frac{14}{2} (9 + 61)$, = 490	M1, A1
	$"490"-6 = \frac{4(3^n - 1)}{3 - 1}$	M1
	$3^n = 243$ $n = 5$	ddM1A1 (5) [9]
(a)		
B1 D1	Correct value, no working or explanation needed	
B1 (b)	Correct value, no working or explanation needed	
B1	Correct value, no working or explanation needed	
B1	Correct value, no working or explanation needed	
(c)		
M1	Use either formula for the sum of an arithmetic series with their a and d (i obtain a value for the sum of the first 14 terms	f needed) and
A1	Correct value for the sum	
M1	Subtract 6 from their sum (explicitly or implicitly) and equate to the sum of the geometric generation of the ge	of the first <i>n</i>
ddM1	terms of the geometric series obtained using their a and r Solve their equation by a correct method. No method need be shown but r	nust reach
	$n = \dots$ Depends on both M marks above	
A1	Correct value for <i>n</i> obtained	
ALT	For the last 3 marks:	
M1	Subtract 6 from their sum and generate at least the first 5 terms of the geo	metric series.
ddM1	Sum their terms until at least "484" is reached	
A1	Correct answer (5) obtained from correct work.	

Question Number	Scheme	Marks
8(a)	$AB^{2} = 4^{2} + 2^{2}, BC^{2} = 2^{2} + 6^{2}, AC^{2} = 2^{2} + 4^{2}$	M1 (any one)
	(i) $AB = \sqrt{20}$ (ii) $BC = \sqrt{40}$ (iii) $AC = \sqrt{20}$ or equivalents (4.47) (6.32) (4.47)	A1A1A1 (4)
(b)	Any complete method for finding one of the angles: eg $AB^2 + AC^2 = BC^2 \Rightarrow \angle A = 90^\circ$ or use trigonometry	M1
	$\angle A = 90^{\circ}, \ \angle B = \angle C = 45^{\circ}$	A1, A1 (3)
Ι	(centre at midpoint of BC) (5,5)	M1A1 (2)
(d)	Radius = $\frac{1}{2}BC = \frac{1}{2}\sqrt{40} = \sqrt{10}$	M1A1 (2)
	(Working for (d) may be seen in a previous part)	[11]
(a) M1	Use Pythagoras with a plus sign to obtain AC^2 , BC^2 or AC^2 . If the answer is incorrect it	
A1A1A1	must be clear that the correct coordinates have been used correctly. Award A1 for each correct length. Ignore labels (i), (ii) and (iii). Award M1A1A1A1 / M1A1A1A0 / M1A1A0A0 as appropriate.	
SC:	If there is no working shown but at least one length is correct, award M1 a A mark for each incorrect length. (no length correct and no working \Rightarrow N If all 3 lengths are correct to at least 3 sf, award M1A1A1A0 If 2 are correct to at least 3 sf, award M1A1A0A0	
(b) M1	If 2 are correct to at least 3 sf, award M1A1A0A0 Attempt to obtain any of the required angles. Method must be complete (ie reach a value for one angle) and formula used must be correct and values must be substituted into a correct formula.	
A1 A1 (c)	$\angle A = 90^{\circ}$ Any labelling given can be ignored. $\angle B = \angle C = 45^{\circ}$ All 3 correct w/o working scores M1A1A1	
M1	For indicating that the centre is at the midpoint of <i>BC</i> . This can be stated explicitly or used by attempting to find the midpoint. OR: Find equations for perpendicular bisectors of 2 of the sides and find the point of intersection	
A1	Both coordinates correct. Correct answer written down w/o working scor	es M1A1
(d) M1	For indicating that the radius is half the length of BC . This can be stated e used by attempting to find half of their BC (not nec in the required form).	xplicitly or
A1 NB	Correct length of the radius, in the required form. If half the length of <i>BC</i> has been found earlier the marks for (d) can only be the length of the radius has been written in (d).	be awarded if

Question Number	Scheme	Marks
9(a)	$f(x) = \frac{1}{4}x^4 - \frac{1}{3}x^3 - 2x^2 + 4x \ (+c)$	M1A1
	$x = -2 y = -\frac{28}{3} \Longrightarrow c = 0$	M1
	$\left(f\left(x\right) = \frac{1}{4}x^4 - \frac{1}{3}x^3 - 2x^2 + 4x\right) \therefore C \text{ passes through } O$	A1 cso (4)
(b)(i)	x = 2 f'(x) = 8 - 4 - 8 + 4 = 0	M1
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 3x^2 - 2x - 4$	M1
	$x = 2$ $\frac{d^2 y}{dx^2} = 12 - 4 - 4 > 0$ \therefore min at $x = 2$	Alcso
	x = 1 f'(x) = 1 - 1 - 4 + 4 = 0	M1
	$x = 1$ $\frac{d^2 y}{dx^2} = 3 - 2 - 4 < 0$ \therefore max at $x = 1$	A1 cso
ALT	f'(x) = (x-2)(x-1)(x+2) (=0) factorise	M1
	x = 2, 1, (-2) solve (solutions to be 2,1 (and another))	M1
	OR: $f'(x) (= 0)$ solved by calculator.	
	All 3 solutions needed (and correct) $= 0$ not needed M2	
	$\frac{d^2 y}{dx^2} = 3x^2 - 2x - 4$ differentiate	M1
	$x = 2$ $\frac{d^2 y}{dx^2} = 12 - 4 - 4 > 0$ \therefore min at $x = 2$	Alcso
	$x = 1$ $\frac{d^2 y}{dx^2} = 3 - 2 - 4 < 0$ \therefore max at $x = 1$	Alcso
(ii)	$x = 1 \Longrightarrow y = 1\frac{11}{12}$ $x = 2 \Longrightarrow y = 1\frac{1}{3}$	B1B1 (7)
(c)	y' = (x-1)(x-2)(x+2)	M1
(i)	$x = -2, y = -\frac{28}{3}$ or $\left(-2, -\frac{28}{3}\right)$	A1
(ii)	$x = -2$ $\frac{d^2 y}{dx^2} = 12 + 4 - 4 > 0$: min point	Alcso (3)
		[14]

Question Number	Scheme	Marks
(a)M1	Attempt to integrate $f'(x)$. The power of at least one <i>x</i> term must increase and none should decrease. <i>c</i> not needed	
A1	Correct integration, c not needed	
M1	Substitute the given coordinates to show $c = 0$. If c is not included (or assumed to be 0), then showing that substitution of $x = -2$ gives $y = -28/3$ is acceptable. Substitutions must be shown.	
Alcso	Correct conclusion from fully correct work. Accept eg f $(0) = 0$: shown	L
(b)	Ignore labels (i) and (ii) when marking (b)	
(i)M1	Substitute $x = 2$ in the expression for f'(x) to show f'(x) = 0. Substitution r	nust be shown
M1	Differentiate the expression for $f'(x)$. At least one power must decrease and none increase.	
Alcso	Show second derivative is > 0 at $x = 2$ and give the conclusion. No errors or omissions in the working.	
M1	Substitute $x = 1$ in the expression for f'(x) to show f'(x) = 0. Substitution must be shown	
Alcso	Show second derivative is < 0 at $x = 1$ and give the conclusion. No errors or omissions in the working.	
(ii)B1	For either <i>y</i> coordinate correct (and <i>x</i> coordinate correctly indicated; subst indicates this)	itution shown
B1	For the second <i>y</i> coordinate correct	
(c)	(May have been seen in (b))	
M1	Factorise $f'(x)$ completely – any valid method OR use the factor theorem t	to find $x = -2$
(i)A1	Extract the <i>x</i> coordinate of the third turning point and obtain the correspondence of the third turning point and obtain the correspondence of the third turning point and obtain the correspondence of the third turning point and obtain the correspondence of the third turning point and obtain the correspondence of the third turning point and obtain the correspondence of the third turning point and obtain the correspondence of the third turning point and obtain the correspondence of the third turning point and obtain the correspondence of the third turning point and obtain the correspondence of the third turning point and obtain the correspondence of the third turning point and obtain the correspondence of the third turning point and obtain the correspondence of the third turning point and obtain the correspondence of the turning point and obtain the correspondence of the turning point and obtain the correspondence of the turning point and obtain the correspondence of turning point and obtain turning	nding y
(ii)A1cso	Test the sign of the second derivative at this point and make the conclusion. All work in	
	(c) and $\frac{d^2 y}{dx^2}$ (from (b)) must be completely correct for this mark to be away	arded.
1.	Alternative ways to determine the nature of the turning points: If the change of sign of $f'(x)$ is used then values of $f'(x)$ either side of 1 an	d 2 must be
2.	calculated to provide evidence. The continuity of a cubic function can be used to establish the nature of th points. If in doubt send to review.	e turning

Question Number	Scheme	Marks
10(a)	$\alpha + \beta = -3$ $\alpha \beta = -5$	B1
(i)	$\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta, = 19$	M1,A1
(ii)	$\alpha^4 + \beta^4 = (\alpha^2 + \beta^2)^2 - 2\alpha^2\beta^2, = 19^2 - 50 = 311$	M1,A1(5)
	OR: $\alpha^4 + \beta^4 = (\alpha + \beta)^4 - 4\alpha\beta(\alpha^2 + \beta^2) - 6\alpha^2\beta^2$, $= 19^2 - 50 = 311$	
	$(\alpha - \beta)^2 = \alpha^2 - 2\alpha\beta + \beta^2 = 19 + 10 \text{ OR}$	
(b)	$(\alpha - \beta)^{2} = (\alpha + \beta)^{2} - 4\alpha\beta = 9 - (-20)$	M1
	$\alpha - \beta = \sqrt{29} *$	A1 cso (2)
(c)	$ \begin{array}{l} \alpha - \beta = \sqrt{29} \\ \alpha^4 - \beta^4 = (\alpha^2 - \beta^2)(\alpha^2 + \beta^2) = (\alpha - \beta)(\alpha + \beta)(\alpha^2 + \beta^2) \end{array} $	M1A1A1 (3)
(d)	$\alpha^{4} - \beta^{4} = \sqrt{29} \times (-3) \times 19 = -57\sqrt{29} \ \left(-\sqrt{94221}\right)$	M1A1 (2)
(e)	$2\beta^4 = \alpha^4 + \beta^4 - \left(\alpha^4 - \beta^4\right)$	M1
	$\beta^{4} = \frac{1}{2} \left(311 + 57\sqrt{29} \right), = \frac{311}{2} + \frac{57}{2}\sqrt{29}$	A1,A1 (3)
	$p = \frac{311}{2}$ $q = \frac{57}{2}$	[15]
		[10]
ALT	$\beta^4 = \left(\frac{-3 - \sqrt{29}}{2}\right)^4$ and use a correct binomial expansion M1A1	
	Correct final answer A1	
		<u> </u>
(a)B1	Correct sum and product of roots, seen explicitly or used (in (a)). Must be is negative	e clear that sum
(i)M1	Correct algebra, ready for substitution of sum and product	
A1	Correct answer, condone use of $\alpha + \beta = 3$.	
(ii)M1	Correct algebra, ready for substitution	
A1	Correct answer, condone use of $\alpha + \beta = 3$.	
(b)M1 A1cso	Correct algebra and substitution of their values Correct answer from correct working. Must have seen sum = -3 here if no	t shown in (a)
(c)	-5 here it no	t shown in (a)
M1	Factorise to 2 quadratic brackets or 2 linear and one quadratic bracket	
A1	Obtain 2 linear and 1 quadratic brackets with 2 of the 3 brackets correct	
A1	Third correct bracket Accept $(\alpha^2 + \beta^2)$ or $((\alpha + \beta)^2 - 2\alpha\beta)$	
(d)M1	Substitute their values for each of the 3 brackets obtained in (c)	
A1	Correct answer as shown or equivalent exact value	
(e) M1	C i c $2\theta^4$ c θ^4	
M1	Correct expression for $2\beta^4$ or β^4	• • •
A1ft	Substitute their numbers to obtain a numerical expression for β^4 The exp exact but need not be simplified	ression must be
	NB A correct numerical expression for their values implies M1	
A1	Correct answer in the required form. p and q need not be shown explicitly	·

Question Number	Scheme	Marks
11(a)	$AC = \sqrt{\left(16^2 + 16^2\right)} = 16\sqrt{2}$	M1A1
ALT:	$AP^2 + PD^2 = 16^2 \implies AP = 8\sqrt{2}$	
	$VP = 8\sqrt{2} \tan 45 = 8\sqrt{2}$ (where <i>P</i> is the centre of the base) *	M1A1cso (4)
(b)	$VA^{2} = (8\sqrt{2})^{2} + (8\sqrt{2})^{2} (= 256)$ or $VA = \frac{8\sqrt{2}}{\sin 45^{\circ}}$	M1A1
	VA = 16 cm	A1 (3)
(c)	$DX^2 = 16^2 - 8^2$ where X is the foot of the perpendicular from D to VA	M1A1
	$DX = 8\sqrt{3}$	A1 (3)
(d)	$\tan\theta = \frac{8\sqrt{2}}{8}, \sin\theta = \frac{8\sqrt{2}}{8\sqrt{3}}, \cos\theta = \frac{8}{8\sqrt{3}}$	M1A1
(4)	(or unsimplified if cosine or sine rule used) $\theta = 54.7^{\circ}$	A1 (3)
(e)	$\cos\phi = \frac{\left(8\sqrt{3}\right)^2 + \left(8\sqrt{3}\right)^2 - \left(16\sqrt{2}\right)^2}{2 \times 8\sqrt{3} \times 8\sqrt{3}} \left(=-\frac{1}{3}\right)$	M1A1
	$\phi = 109.5^{\circ}$	A1 (3) [16]
(a) M1 A1 M1 A1cso	Use Pythagoras (with a + sign) to obtain the length of the diagonal of the base. Or use Pythagoras with correct sign to obtain the half diagonal Correct length for the diagonal or half diagonal Use tan in ΔAPV , their AP and angle of 45° to obtain the height Correct answer with no errors in the working OR: State ΔAVP is isosceles, or shown the 2 correct angles – can be on	a diagram M1
	$VP(=AP) = 8\sqrt{2}$ OR use any other complete valid method M1 Correct result A1	A1
(b) M1	Use Pythagoras or trigonometry in $\triangle APV$ or $\triangle AVC$ (or any other complemethod) to obtain a numerical expression for VA.	ete, valid
A1 A1	Correct numbers in their choice of method. Correct length obtained. AV = 16 w/o working scores M1A1A1	

Question Number	Scheme	Marks
(c) M1 A1 A1 (d)	Use Pythagoras with a minus sign (seen or implied) or trigonometry in ΔA other complete valid method NB : triangle ΔADV is equilateral. Correct numbers in their choice of method. Correct exact length for the perpendicular.	1DX OR any
M1	Identify the correct triangle needed with the required angle marked (may be This may be shown explicitly or implied by their work that follows.	be on Figure 1).
A1	Reach one of $\tan \theta = \frac{8\sqrt{2}}{8}$, $\sin \theta = \frac{8\sqrt{2}}{8\sqrt{3}}$, $\cos \theta = \frac{8}{8\sqrt{3}}$ oe	
A1 (e)	Correct answer, must be 1 dp.	
M1	Use cosine rule: $\cos\phi = \frac{"DX"^2 + "XB"^2 - "BD"^2}{2 \times "DX" \times "XB"}$ (their values)	
A1	Correct numbers substituted, follow through their previous answers	
A1	Correct answer, must be 1 dp unless already penalised in (d)	
	Any other routes should be marked: M1 Correct, complete method (ie it must be possible to reach a value for t	he required
	angle)	
	A1 Correct numbers substituted	
	A1 Correct answer, must be 1 dp unless already penalised in (d)	

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom